Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Hexakis(prop-2-enamide)copper(II) bis(perchlorate) and hexakis(prop-2enamide)manganese(II) bis(perchlorate)

Andrew Kellett, ${ }^{\text {a }}$ Georgina Rosair, ${ }^{\text {b }}{ }^{\text {* }}$ Michael Devereux, ${ }^{\text {a }}$ Mary McNamara ${ }^{\text {a }}$ and Malachy McCann ${ }^{\text {c }}$

${ }^{\text {a }}$ Inorganic Pharmaceutical and Bio-mimetic Research Laboratory and Focas Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland, ${ }^{\text {b }}$ Perkin Building, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, and ${ }^{\text {c }}$ Chemistry Department, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
Correspondence e-mail: g.m.rosair@hw.ac.uk

Received 14 July 2010
Accepted 28 September 2010
Online 30 October 2010
The structures of $\left[\mathrm{Cu}(\mathrm{AA})_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, (I), and $\left[\mathrm{Mn}(\mathrm{AA})_{6}\right]$ $\left(\mathrm{ClO}_{4}\right)_{2}$, (II) (AA is acrylamide, also known as prop-2enamide; $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NO}$), display both intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding. A three-dimensional network is propagated via the perchlorate counter-ions. There are two crystallographically independent molecules in the copper complex, with the most significant difference between them being the conformation of one symmetry-related pair of AA ligands which are in the unusual syn conformation. The copper complex exhibits syn/anti disorder of the $=\mathrm{CH}_{2}$ group in one pair of symmetry-related AA ligands. The $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Mn}^{\mathrm{II}}$ centres are both situated on centres of inversion. The copper complex cation has octahedral coordination geometry with typical Jahn-Teller distortions.

Comment

Acrylamide (prop-2-enamide, AA) is a versatile nucleophile containing olefinic, carbonyl and amine groups. Consequently, AA can form a variety of metal complexes (Reedijk, 1971; Girma et al., 2005a), predominantly coordinating through the carbonyl O atom, with the monodentate geometries of divalent transition metals being octahedral for $\left[M(\mathrm{AA})_{6}\right]$ species. $\left[M X_{2}(\mathrm{AA})_{4}\right]$ species also adopt an octahedral geometry, with counter-ions or, in some cases, water molecules, occupying the ancillary coordinating positions (Girma et al., 2005a,b,c,d, $2006 a, b)$. As yet, the structures of the copper(II) and manganese(II) AA complexes, (I) and (II), have not been published and both structures are described herein.

AA has sparked worldwide debate within food safety circles due to its discovery within thermally treated foodstuffs (Rosen \& Hellenas, 2002; Tareke et al., 2002; Mottram et al., 2002). It
has been classified as a probable human carcinogen by the International Agency for Research on Cancer (1994) and is implicated in tumour formation (Rice, 2005), neurotoxicity (Chen et al., 2009) and mutagenesis (Martins et al., 2007; Baum et al., 2005). While AA and its metabolites, especially glycidamide, have been the subject of intensive investigations, the possibility of any of these species forming metal complexes in vivo through interaction with either free metal ions or metal cations within metalloenzymes has yet to be investigated. The relative ease with which metal adducts of AA are formed, along with their apparent water solubility, makes us believe that compounds of this type may be worthy of further investigation from both synthetic and toxicological standpoints.

(I)

(II)

The crystal structure of (I) consists of two crystallographically independent $\mathrm{Cu}^{\mathrm{II}}$ centres, both situated on centres of inversion (Figs. 1 and 2). The $\mathrm{Cu}-\mathrm{O}$ distances in the two molecules occur in two distinct ranges, viz. short [1.9338 (9)-1.9735 (10) Å] and long distances [2.4535 (10)2.5241 (11) A]. This is typical of Jahn-Teller distortions observed in d^{9} metal centres. The Cu 2 centre has the greater spread of $\mathrm{Cu}-\mathrm{O}$ distances but it is the other crystallographically independent molecule containing Cu 1 which has disorder in one of the symmetry-independent $=\mathrm{CH}_{2}$ groups. In this disordered group, there are two possible positions for the $=\mathrm{CH}_{2}$ group, the major component being occupied approximately 64% of the time. The major component has the $=\mathrm{CH}_{2}$ group anti with respect to NH_{2}, as in the ordered AA ligands, whereas the minor component is of the unusual syn conformation. In the other crystallographically independent molecule, one pair of AA ligands exists solely in this syn form, the rest have the anti configuration. None of the AA complexes found in the May 2010 version of the Cambridge Structural Database (Allen, 2002) has the syn form. Several $=\mathrm{CH}_{2} \mathrm{C}$-atom displacement ellipsoids are rather anisotropic,

Figure 1
A perspective view of one of the crystallographically independent molecules in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The suffix ' A ' denotes the symmetry operation $(-x+2,-y+1,-z)$. Counter-ions and the minor disorder component in the $=\mathrm{CH}_{2}$ fragment have been omitted for clarity. H atoms are shown as small spheres of arbitrary radii. Intramolecular hydrogen bonds are shown as dashed lines.

Figure 2
A perspective view of the second crystallographically independent molecule of (I), showing the atom-numbering scheme. Counter-ions have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. The suffix ' A ' denotes the symmetry operation ($-x$, $-y+2,-z+1) . \mathrm{H}$ atoms are shown as small spheres of arbitrary radii. Intramolecular hydrogen bonds are shown as dashed lines.
but there is no residual electron density greater than 0.5 e \AA^{-3} associated with the AA atoms that would suggest additional syn/anti disorder. One perchlorate ion is noticeably disordered and was modelled with two O 4 orientations, yet four of the eight O -atom positions take part in hydrogen bonding. Three of the four O atoms in the other ordered perchlorate take part in hydrogen bonding.

In the manganese complex, (II), the $\mathrm{Mn}^{\mathrm{II}}$ centre also lies on a centre of inversion but with the six $\mathrm{Mn}-\mathrm{O}$ bond lengths in a tighter range $[2.1357$ (9)-2.1976 (9) \AA], as would be expected

Figure 3
A perspective view of (II), showing the atom-numbering scheme. Counter-ions have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. The suffix ' A ' denotes the symmetry operation $(-x,-y,-z+2)$. H atoms are shown as small spheres of arbitrary radii. Intramolecular hydrogen bonds are shown as dashed lines.
for an $\mathrm{Mn}^{\mathrm{II}}$ ion. All AA ligands are in the usual anti conformation (Fig. 3).

All amine H atoms of (I) and (II) participate in hydrogen bonding, either intermolecularly with perchlorate O atoms to form a three-dimensional network, or intramolecularly with neighbouring AA O atoms. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving amides bound to the Cu 2 centre of (I) are closer to linearity than those emanating from the molecule containing Cu 1 (see Table 1). In (I) and (II), and also in the cobalt (Girma et al., 2005b) and iron (Girma et al., 2006a) hexaacrylamide analogues, the intermolecular hydrogen bonds all involve the counter-ion. There are no direct cation-to-cation contacts in any of these four complexes. In (I) and (II), only four of the six amine groups take part in intramolecular hydrogen bonding (see Figs. 1, 2 and 3). These form six-membered rings with graph-set notation $S(6)$ (Bernstein et al., 1995). The H atoms of the other two amines take part in intermolecular hydrogen bonding only. This is also the case in the $\mathrm{Fe}^{\mathrm{II}}$ analogue (Girma et al. 2006b), while in the $\mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ structures (Girma et al. 2006b), all amines are involved in intermolecular hydrogen bonding. The solely intermolecularly hydrogenbonded ligand (and its symmetry equivalent) in (I) has the longest $\mathrm{Cu}-\mathrm{O}$ distance at both Cu centres, whereas conversely in (II), the shortest $\mathrm{Mn}-\mathrm{O}$ bonds are made by the solely intermolecularly hydrogen-bonded ligand.

The three shortest $\mathrm{N} \cdots \mathrm{O}$ distances are all intramolecular hydrogen bonds in (I), but there is no such distinction in (II). Two pairs of O atoms in (I) do not participate in hydrogen bonding (O3, O4 and their symmetry equivalents), whereas atoms O2 and O6 make bifurcated hydrogen bonds with neighbouring amine groups (see Figs. 1 and 2). The pattern in (II) differs subtly in that although one pair of O atoms (O3 and its symmetry equivalent) is not involved in $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$

Figure 4
The hydrogen bonding of (I), showing both intra- and intermolecular hydrogen bonds (dashed lines).

Figure 5
The hydrogen bonding of (II), showing both intra- and intermolecular hydrogen bonds (dashed lines).
hydrogen bonding, no bifurcated hydrogen bonds are made by the other O atoms. The torsion angles $\mathrm{M}-\mathrm{O}-\mathrm{C}-\mathrm{N}$ in (I) and (II) vary such that when this intramolecular hydrogen bond is present the range of values is $3.33(19)-19.9(2)^{\circ}$, but when the amine does not make this type of bond the torsion angle is between $-80.87(16)$ and $-107.33(14)^{\circ}$. The $\mathrm{Fe}^{\mathrm{II}}$ species with the perchlorate counter-ion (Girma et al., 2006b) has a similar combination of intra- and intermolecular hydrogen-bonding patterns to the $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Mn}^{\mathrm{II}}$ structures described here. However, in the $\mathrm{Fe}^{\mathrm{II}}$ analogue with μ_{2}-oxido-hexachloridodiiron(III) as the counter-ion (Girma et al., 2008), the amides all have intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contacts, although, in addition, two amine groups make intermolecular contacts with the bridging oxide atom in the counter-ion.

The intermolecular hydrogen bonding in (I) and (II) is extensive and propagates in three dimensions (see Figs. 4 and 5, and Tables 1 and 2). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ linkages joining the complex cations to the counter-ions form a series of rings. One type of ring $\left[\mathrm{viz} . R_{4}^{2}(20)\right]$ involves one perchlorate O atom in a bifurcated hydrogen bond as the link between complex cations, and another requires two O atoms in the counter-ion to form the ring $R_{4}^{4}(24)$. Both these rings are over centres of inversion and involve two identical $\mathrm{Cu}^{\mathrm{II}}$ centres. Complex cations containing Cu 1 and Cu 2 are joined to form dimers via perchlorate O atoms, with graph-set notation $D_{3}^{3}(14)$. In (II), the intermolecular hydrogen bonding differs from (I) in that chains are more apparent than rings. The smallest ring which includes the metal centres has graph-set notation $R_{8}^{8}(36)$, where four manganese complex cations are needed to form a ring with four perchlorates.

In conclusion, metal complexes of AA display a significant degree of variation in intramolecular hydrogen bonding, even between chemically identical molecules. Such variation increases the capacity for yet more diversity in intermolecular interactions for complexes containing relatively simple ligands.

Experimental

For the preparation of $\left[\mathrm{Cu}(\mathrm{AA})_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, (I), acrylamide $(1.15 \mathrm{~g}$, 16.2 mmol) was added to a solution of copper(II) perchlorate hexahydrate ($1.0 \mathrm{~g}, 2.7 \mathrm{mmol}$) in a $50: 50$ mixture of acetonitrile and triethyl orthoformate $(14 \mathrm{ml})$. The resulting blue solution was stirred at room temperature for 1 h and then allowed to stand for one week, resulting in the formation of the product as blue crystals (yield 1.17 g , 63%). Analysis calculated: C 31.38, H 4.39, N $12.20, \mathrm{Cl} 10.29 \%$; found: C 31.38 , H 4.36, N 12.04, Cl 10.04%. IR ($\mathrm{KBr}, \nu, \mathrm{cm}^{-1}$): 3335, 3196, 1667, 1429, 1353, 1281, 1089, 985, 811, 626, 508; Raman $\left(\mathrm{cm}^{-1}\right): 3103$, 3033, 3011, 2923, 1682, 1637, 1588, 1435, 1284, 1144, 1052, 959, 941, $844,812,627,506,462,303,126,98$; solubility: water; UV-Vis: $\lambda_{d-d}=$ $808 \mathrm{~nm}, \varepsilon=12 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$.

For the preparation of $\left[\mathrm{Mn}(\mathrm{AA})_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2},(\mathrm{II})$, acrylamide $(1.17 \mathrm{~g}$, 16.6 mmol) was added to a solution of manganese(II) perchlorate hexahydrate ($1.0 \mathrm{~g}, 2.8 \mathrm{mmol}$) in a $50: 50$ mixture of acetonitrile and triethyl orthoformate (14 ml). The resulting colourless solution was stirred at room temperature for 1 h and then allowed to stand for one week, resulting in the formation of the product as colourless crystals which were stored at 253 K (yield $1.21 \mathrm{~g}, 64 \%$). Analysis calculated: C 31.78, H 4.44, N 12.35, Cl 10.42\%; found: C 29.68, H 4.74, N 11.05, Cl 7.65%. IR (KBr, $\left.\nu, \mathrm{cm}^{-1}\right): 3333,3189,2745,1665,1621,1589,1436$, 1436, 1360, 1282, 1105, 979, 811, 629; Raman (cm^{-1}): 3363, 2932, 1667, 1606, 1459, 1324, 1122, 933, 842, 764, 624, 458, 134; solubility: water.

Compound (I)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NO}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	$\gamma=83.690(3)^{\circ}$
$M_{r}=688.92$	$V=1472.77(15) \AA^{3}$
Triclinic, $P \bar{P}$	$Z=2$
$a=8.4577(5) \AA$	$M o K \alpha$ radiation
$b=9.8762(6) \AA$	$\mu=1.00 \mathrm{~mm}^{-1}$
$c=17.7889(11) \AA$	$T=100 \mathrm{~K}$
$\alpha=88.392(3)^{\circ}$	$0.80 \times 0.58 \times 0.32 \mathrm{~mm}$
$\beta=85.871(3)^{\circ}$	

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 4 S^{\mathrm{i}}$	0.83 (1)	2.21 (2)	2.9997 (18)	159 (2)
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\text {ii }}$	0.84 (1)	2.12 (2)	2.9049 (17)	155 (2)
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 8 T^{\text {iii }}$	0.83 (2)	2.21 (3)	2.97 (2)	153 (2)
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1 S^{\text {iii }}$	0.83 (2)	2.24 (2)	2.9952 (18)	151 (2)
N3-H3B \cdots O2	0.83 (1)	2.15 (2)	2.8759 (17)	147 (2)
N3-H3A \cdots O1S	0.85 (1)	2.20 (2)	3.0219 (17)	162 (2)
N4-H4A \cdots O6S	0.83 (1)	2.23 (2)	3.037 (8)	164 (2)
N4-H4A \cdots O5T	0.83 (1)	2.38 (2)	3.19 (2)	166 (2)
N4-H4B $\cdots \mathrm{O}^{\text {iv }}$	0.84 (1)	2.21 (2)	2.9362 (16)	145 (2)
N5-H5B \cdots O6S ${ }^{\text {v }}$	0.84 (1)	2.27 (2)	3.100 (6)	171 (2)
N5-H5B \cdots O $5 T^{v}$	0.84 (1)	2.19 (2)	3.027 (15)	179 (2)
N5-H5A \cdots O6	0.85 (1)	2.05 (2)	2.8676 (17)	161 (2)
N6-H6B \cdots O2 $S^{\text {Vi }}$	0.86 (1)	2.15 (2)	3.0019 (18)	170 (2)
N6-H6A \cdots O $8 S^{\text {vi }}$	0.85 (1)	2.25 (2)	3.080 (9)	166 (2)
N6-H6A \cdots O8 ${ }^{\text {vi }}$	0.85 (1)	2.32 (3)	3.15 (2)	166 (2)

Symmetry codes: (i) $x-1, y+1, z$; (ii) $-x,-y+1,-z$; (iii) $-x+1,-y+1,-z$; (iv)
$-x,-y+2,-z+1$; (v) $-x+1,-y+2,-z+1$; (vi) $-x+1,-y+1,-z+1$.

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\text {min }}=0.503, T_{\text {max }}=0.741$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.081$
$S=1.01$
9130 reflections
457 parameters
165 restraints

Compound (II)

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NO}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}$
$M_{r}=680.32$
Monoclinic, $P 2_{1} / c$
$a=9.2804$ (6) \AA
$b=15.9533$ (10) \AA
$c=10.6876$ (7) \AA
$\beta=111.642$ (3) ${ }^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.662, T_{\text {max }}=0.757$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.090$
$S=1.08$
5063 reflections

34176 measured reflections 9130 independent reflections 7503 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.52 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.58 \mathrm{e}^{-3}$
namely (C31/C32/C33), (C41/C42/C43) and (C21/C22/C23C/C23B), or similarity restraints (SIMU), namely (C22/C23C/C23B), (C32/C33) and ($\mathrm{C} 42 / \mathrm{C} 43$); atoms in parentheses were restrained together. All $\mathrm{Cl}-\mathrm{O}$ and $\mathrm{O} \cdots \mathrm{O}$ distances in both perchlorate anions were restrained to be similar within a standard uncertainty of $0.02 \AA$. One perchlorate anion has disordered O atoms and two orientations were modelled for all four O atoms with occupancies of 0.74 (2) for the major component. For both (I) and (II), all amine H atoms were located in difference Fourier maps. Their coordinates were refined in (I), with $\mathrm{N}-\mathrm{H}$ distances restrained to 0.85 (2) \AA, but fixed in geometrically idealized positions in (II) and treated as riding on the parent N atom, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{N})$. The positions of all H atoms bound to C atoms were calculated and constrained to idealized geometries, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Dublin Institute of Technology Capacity Building Scheme for Strategic Research Programmes (CaBS). This work was carried out in part within the structure of the Focas Research Institute, DIT, funded under the Irish National Development Plan with assistance from the European Regional Development Fund. GMR thanks the EPSRC (UK) for funding for the APEXII diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GT3024). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Baum, M., Fauth, E., Fritzen, S., Herrmann, A., Mertes, P., Merz, K., Rudolphi, M., Zankl, H. \& Eisenbrand, G. (2005). Mutat. Res. 580, 61-69.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2008). APEX2. Version 2009-5. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, J.-H., Wu, K.-Y., Chiu, I.-M., Tsou, T.-C. \& Chou, C.-C. (2009). Toxicol. In Vitro, 23, 855-861.
Girma, K. B., Lorenz, V., Blaurock, S. \& Edelmann, F. T. (2005a). Coord. Chem. Rev. 249, 1283-1293.
Girma, K. B., Lorenz, V., Blaurock, S. \& Edelmann, F. T. (2005b). Z. Anorg. Allg. Chem. 631, 1419-1422.

metal-organic compounds

Girma, K. B., Lorenz, V., Blaurock, S. \& Edelmann, F. T. (2005c). Z. Anorg. Allg. Chem. 631, 2763-2769.
Girma, K. B., Lorenz, V., Blaurock, S. \& Edelmann, F. T. (2005d). Z. Anorg. Allg. Chem. 631, 1843-1848.
Girma, K. B., Lorenz, V., Blaurock, S. \& Edelmann, F. T. (2006a). Inorg. Chim. Acta, 359, 364-368.
Girma, K. B., Lorenz, V., Blaurock, S. \& Edelmann, F. T. (2006b). Z. Anorg. Allg. Chem. 632, 1874-1878.
Girma, K. B., Lorenz, V., Blaurock, S. \& Edelmann, F. T. (2008). Inorg. Chim. Acta, 361, 346-348.
International Agency for Research on Cancer (1994). IARC Monogr. Eval. Carcinog. Risks Hum. 60, 389-433.

Martins, C., Oliveira, N. G., Pingarilho, M., daCosta, G. G., Martins, V., Marques, M. M., Beland, F. A., Churchwell, M. I., Doerge, D. R., Rueff, J. \& Gaspar, J. F. (2007). Toxicol. Sci. 95, 383390.

Mottram, D. S., Wedzicha, B. L. \& Dodson, A. T. (2002). Nature (London), 419, 448-449.
Reedijk, J. (1971). Inorg. Chim. Acta, 5, 687-690.
Rice, J. M. (2005). Mutat. Res. 580, 3-20.
Rosen, J. \& Hellenas, K. E. (2002). Analyst, 127, 880-882.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S. \& Törnqvist, M. (2002). J. Agric. Food Chem. 50, 4998-5006.

